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Abstract. Bound states in the continuum (BIC) are shown to exist in a single-level Fano-Anderson model
with a colored interaction between the discrete state and a structured tight-binding continuum, which may
describe mesoscopic electron or photon transport in a semi-infinite one-dimensional lattice. The existence
of BIC is explained in the lattice realization as a boundary effect induced by lattice truncation.

PACS. 73.23.Ad Ballistic transport – 03.65.Ge Solutions of wave equations: bound states – 73.23.-b
Electronic transport in mesoscopic systems

1 Introduction

Since the pioneering proposal of the existence of iso-
lated quantum mechanical bound states embedded in the
continuum, made by von Neumann and Wigner [1] in
the study of the one-particle Schrödinger equation with
certain spatially oscillating attractive potentials, several
theoretical and a few experimental studies have demon-
strated the existence of “bound states in the contin-
uum” (BIC) in a wide range of different physical sys-
tems [2–22]. BIC may be found in certain atomic or
molecular systems [2,5,16], such as hydrogen atom in
a uniform magnetic field [5], in semiconductor superlat-
tice structures [3,4,8,11,18], in mesoscopic electron trans-
port and quantum waveguides [6,7,9,10,12,14,15], and in
quantum dot systems [13,17,19–21]. The question of ex-
istence of BIC has been also addressed for the famous
Fano-Anderson Hamiltonian [23–25] (also referred to as
the Friedrichs-Lee Hamiltonian [26–28]), which model the
process of quantum mechanical decay of an unstable lo-
calized state coupled to a continuum in different con-
texts such as atomic physics, quantum electrodynamics,
solid state and high-energy physics (see, e.g., [25,29–32]).
BIC in Fano-Anderson-like models are commonplace in
case where several (i.e. more than one) discrete states
are coupled to a common continuum; a noteworthy exam-
ple of this case in condensed-matter physics is provided,
for instance, by quantum transport and scattering in dot
molecules attached to leads [17,19–22]. In those systems
the existence of BIC is usually related to the destruction
of discrete-continuum decay channels via quantum inter-
ference through a typical trapping mechanism. The con-
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ditions for the existence of BIC for a general multi-level
Fano-Anderson Hamiltonian have been recently stated in
reference [33]; in particular, a sufficient condition that en-
sures the non-existence of BIC has been demonstrated. In
case of a single localized state embedded in and interacting
with a continuum, the existence of bound states (some-
times referred to as “dressed bound states”) has been
acknowledged on many occasions and related to thresh-
old effects or to singularities or gaps in the density of
states of the continuum (see, e.g., [25,31,34–39]). How-
ever, such dressed bound states have usually an energy
outside the continuum [25]: effects such as fractional de-
cay, population trapping and atom-photon bound states
found in several physical models describing the decay of
a single discrete level coupled to a continuum [31,37–39]
are in fact most of the times related to the existence of
dressed bound states with an energy outside the contin-
uum. Conversely, BIC have seldom been encountered in
the single-level Fano-Anderson model: Examples of BIC
involving a single localized state coupled with a specially-
structured continuum have been found in the study of
certain exactly-solvable electrodynamic models of spon-
taneous emission decay with a density of modes showing
a point-like gap [40,41], however physical realizations of
such models were not proposed [31].

It is the aim of this work to present an exactly-solvable
Fano-Anderson Hamiltonian with a single discrete level
coupled to a structured continuum by a colored interac-
tion which supports BIC. The basic idea, here, is to engi-
neer the spectral coupling between the discrete state and
the continuum in such a way to suppress the interaction
between the discrete level and one (or more) frequencies
of the continuum (see [33]). This procedure is therefore
rather distinct than engineering the density of states of
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the continuum itself to produce point-like gaps as in refer-
ences [40,41]. The proposed model of a colored interaction
is of physical relevance to certain condensed-matter and
photonic systems, since it may describe the charge trans-
fer dynamics of adatoms to a semi-infinite one-dimensional
lattice of quantum dots [42] or photon tunneling dynamics
in semi-infinite optical waveguide arrays or coupled opti-
cal resonators [43–48] within the tight-binding approxima-
tion. In these lattice realizations, the tight-binding analy-
sis allows one to simply explain the appearance of BIC as
a boundary effect due to truncation of the lattice.

The paper is organized as follows. In Section 2, the
Fano-Anderson model describing the coupling of a single
localized state with a continuum is briefly reviewed, and
the conditions for the existence of bound states either in-
side or outside the continuum are presented. Section 3
proposes an exactly-solvable model with colored interac-
tion which supports BIC; exact analytical results for the
fractional decay induced by BIC are also presented. Fi-
nally, in Section 4 a lattice realization of the model is
presented, together with a simple physical explanation for
the existence of BIC.

2 Bound states and decay dynamics
for the single-level Fano-Anderson model

2.1 Basic model

The starting point of the analysis is provided by a stan-
dard Fano-Anderson model describing the interaction of
a discrete state |a〉, of energy �ωa, with a continuum de-
scribed by a set of continuous states |k〉 with energy �ω(κ)
(see, for instance, [25,29,31]). The Hamiltonian of the in-
teracting system can be written as H = H0 + V , where

H0 = �ωa|a〉〈a| +
∫
dk �ω(k)|k〉〈k| (1)

is the Hamiltonian of the non-interacting discrete and con-
tinuous states, and

V = �

∫
dk [v(k)|a〉〈k| + v∗(k)|k〉〈a|] (2)

is the interaction part. Normalization has been assumed
such that 〈a|a〉 = 1, 〈a|k〉 = 0 and 〈k′|k〉 = δ(k − k′). If
we expand the wave function |ψ〉 of the system as |ψ〉 =
ca(t)|a〉 +

∫
dkc(k, t)|k〉, the expansion coefficients ca(t)

and c(k, t) satisfy the coupled-mode equations

iċa(t) = ωaca +
∫
dkv(k)c(k, t) (3)

iċ(k, t) = ω(k)c(k, t) + v∗(k)ca(t), (4)

where the dot indicates the derivative with respect to time.
Typically, we assume that the frequency ω(k) of continu-
ous states spans a finite interval (a band) ω1 < ω < ω2 for
the allowed values of the continuous variable k, and that
the frequency ωa of the discrete level is embedded in the
continuum, i.e. that ω1 < ωa < ω2.

2.2 Bound states

The eigenstates |ψE〉 of H corresponding to the eigen-
value E = �Ω are obtained from the eigenvalue equation
H |ψE〉 = �Ω|ψE〉. After introduction of the density of
states ρ(ω) = ∂k/∂ω, from equations (1) and (2) it follows
that the eigenfrequencies Ω are found as the eigenvalues
of the system

Ωca = ωaca +
∫ ω2

ω1

dω
√
ρ(ω)v(ω)c̃(ω) (5)

Ωc̃(ω) = ωc̃(ω) +
√
ρ(ω)v∗(ω)ca, (6)

where we have set c̃(ω) =
√
ρ(ω)c(ω). As the continuous

spectrum of H is the same as that of H0, isolated eigenval-
ues corresponding to bound states may or may not occur
for H . The energy E corresponds to a bound state of H
provided that |ψE〉 is square integrable. This implies

‖ψE‖2 = |ca|2 +
∫ ω2

ω1

dω|c̃(ω)|2 <∞. (7)

We have to distinguish two cases.
(i) Bound states outside the continuum. This is the

most common case, which has been studied on several oc-
casions. A bound state with energy �Ω outside the con-
tinuum exists provided that a root of the equation

Ω − ωa = ∆(Ω) (8)

can be found outside the band (ω1, ω2), where we have set

∆(Ω) =
∫ ω2

ω1

dω
ρ(ω)|v(ω)|2
Ω − ω

. (9)

The conditions for the existence of bound states of this
kind have been extensively investigated in the literature
(see, e.g., [31,38,39]). For instance, equation (8) admits
always two solutions outside the interval (ω1, ω2) when-
ever ρ(ω)|v(ω)|2 does not vanish at the edge of the band,
since in this case ∆(Ω) diverges to ∓∞ as Ω → ω∓

1,2.
(ii) Bound states inside the continuum. As shown in

reference [33], a bound state at frequency Ω inside the
continuum may exist provided that the following two con-
ditions are simultaneously satisfied

|v(Ω)|2ρ(Ω) = 0 , Ω − ωa = ∆(Ω). (10)

Additionally, v(ω)
√
ρ(ω) should vanish as ω → Ω at least

as ∼ (ω−Ω) in order to ensure a finite norm (Eq. (7)). The
first equation in (10) can be satisfied for either ρ(Ω) = 0
or v(Ω) = 0. The former case, which corresponds to a
point-like gap in the density of states inside the band,
has been previously considered for some special density of
state profiles [40,41], which however do not seem to have
simple physical realizations [31]. The latter case, v(Ω) =
0, implies that the discrete state |a〉 does not interact with
the continuous state of frequency Ω, and thus implies a
“colored” interaction profile v(ω) with one zero at ω =
Ω. However, at such a frequency the additional condition
ωa = Ω − ∆(Ω) must be simultaneously satisfied, which
means that BIC may exist solely at a prescribed energy
�ωa of the level |a〉.
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2.3 Decay dynamics

Consider now the decay dynamics of the unstable state
|a〉 embedded in the continuum. This corresponds to
solving equations (3) and (4) with the initial conditions
ca(0) = 1 and c(k, 0) = 0, which can be done by e.g.
a Laplace transformation or a Green’s function analy-
sis (see, for instance, [25,29,31]). Indicating by ĉa(s) =∫∞
0
dtca(t) exp(−st) [Re(s) > 0] the Laplace transform of

ca(t), from equations (3) and (4) one obtains

ĉa(s) =
i

is− ωa −Σ(s)
, (11)

and then, after inversion

ca(t) =
1
2π

∫ 0++i∞

0+−i∞
ds

exp(st)
is− ωa −Σ(s)

, (12)

where Σ(s) is the self-energy, given by

Σ(s) =
∫
dk

|v(k)|2
is− ω(k)

=
∫ ω2

ω1

dω
ρ(ω)|v(ω)|2
is− ω

. (13)

Possible poles on the imaginary axis of ĉa(s) correspond
to bound states of H and are responsible for fractional
decay of the amplitude ca(t). In fact, using the property

Σ(s = −iω ± 0+) = ∆(ω) ∓ iπρ(ω)|v(ω)|2 (14)

with

∆(ω) = P
∫ ω2

ω1

dω′ ρ(ω
′)|v(ω′)|2
ω − ω′ (15)

the poles sp = −iΩ of ĉa(s) satisfy the conditionsΩ−ωa =
∆(Ω) and ρ(Ω)|v(Ω)|2 = 0, i.e. they are located in cor-
respondence of the bound states (either outside or inside
the continuum) of H . In absence of poles (i.e. of bound
states of H), ca(t) decays to zero, whereas in presence of
poles equation (12) can be written as the sum of a contour
(decaying) integral plus the (non-decaying) pole contribu-
tions.

3 BIC in a Fano-Anderson model
with a colored interaction:
an exactly-solvable model

In this section we present an exactly-solvable
Fano-Anderson model, describing the interaction of
a single discrete state with a continuum, which admits
of BIC. Precisely, we assume the following colored
interaction function

v(k) =

√
2
π
κa sin(n0k) (16)

and the following tight-binding dispersion curve for the
band of continuous states

ω(k) = −2κ0 cos k (17)

where 0 ≤ k ≤ π, κ0 and κa are positive real parameters,
and n0 is a positive and nonvanishing integer number,
i.e. n0 = 1, 2, 3, ... A physical realization of this model
will be described in the next section. We note that this
model is a generalization of the well-known tight-binding
Fano-Anderson model with a constant interaction cou-
pling v(k) = const., which is known to show bound states
solely outside the continuum [25]. Note also that for this
band model the density of states, given by

ρ(ω) =
∂k

∂ω
=

1√
4κ2

0 − ω2
, (18)

shows van-Hove singularities at the band edges ω = ±2κ0.
For constant coupling [25], these singularities are respon-
sible for the existence of two bound states outside the
band from either sides. However, for the colored coupling
considered in our case (Eq. (16)) one has

G(ω)≡ρ(ω)|v(ω)|2 =
2κ2

a

π
√

4κ2
0 − ω2

sin2

[
n0 cos−1

(
ω

2κ0

)]

(19)
which vanishes at the band edge. From equations (13, 16)
and (17), the self-energy Σ(s) can be calculated in an
exact form and reads

Σ(s)=
2κ2

a

π

∫ π

0

dk
sin2(n0k)

is+ 2κ0 cos k

=− iκ2
a√

s2 + 4κ2
0

⎡
⎣1−

(
i
√
s2 + 4κ2

0 − is

2κ0

)2n0
⎤
⎦.(20)

Using equation (14), the following expression for ∆(ω) =
Re[Σ(s = −iω ± 0+)] can be then derived

∆(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− κ2
a√

ω2−4κ2
0

[
1 −
(√

ω2−4κ2
0+ω

2κ0

)2n0
]
, ω < −2κ0

κ2
a√

4κ2
0−ω2

sin
[
2n0 cos−1

(
ω

2κ0

)]
, |ω| < 2κ0

κ2
a√

ω2−4κ2
0

[
1 −
(√

ω2−4κ2
0−ω

2κ0

)2n0
]
, ω > 2κ0.

(21)
The behavior of G(ω) ≡ ρ(ω)|v(ω)|2 (Eq. (19)) and ∆(ω)
(Eq. (21)) for increasing values of n0 is shown in Fig-
ure 1. Note the oscillatory behavior of both G(ω) and
∆(ω), with the existence of (2n0 − 1) zeros of ∆(ω)
at ωl = −2κ0 cos[lπ/(2n0)] (l = 1, 2, ..., 2n0 − 1) and
of (n0 + 1) zeros of G(ω) at ωm = −2κ0 cos(mπ/n0)
(m = 0, 1, 2, ..., n0). We can then specialize the general
results of Section 2 to the present model.

(i) Bound states outside the continuum. At most two
bound states at frequency Ω outside the band (−2κ0, 2κ0)
from either sides may exist. Precisely, a bound state at fre-
quency Ω > 2κ0 exists provided that 2κ0 − ωa < ∆(2κ0),
i.e. ωa > 2κ0 − κ2

an0/κ0, whereas a bound state at fre-
quency Ω < −2κ does exist for −2κ0 − ωa > ∆(−2κ0),
i.e. for ωa < −2κ0 + κ2

an0/κ0. Therefore, if the frequency
ωa of the discrete level lies inside the interval

−1 +
κ2

an0

2κ2
0

<
ωa

2κ0
< 1 − κ2

an0

2κ2
0

(22)
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Fig. 1. Behavior of G(ω) = ρ(ω)|v(ω)|2 (dotted curves) and
∆(ω) (solid curves), normalized to κ0, versus normalized fre-
quency ω/κ0 for (κa/κ0) = 0.2 and for increasing values of
integer n0.

bound states outside the continuum do not exist. For a
given value of n0, equation (22) is satisfied for a sufficiently
small value of the coupling κa/κ0 and provided that the
frequency ωa is not too close to the band edges. In the
following, it will be assumed that no bound states exist
outside the continuum.

(ii) Bound states inside the continuum. According to
the results of Section 2.2, one BIC for the model expressed
by equations (16) and (17) exists at Ω = ωa for any
n0 ≥ 2, provided that the frequency ωa of the discrete
level assumes one of the following (n0 − 1) allowed values:

ωa = −2κ0 cos(mπ/n0) (m = 1, 2, ..., n0 − 1). (23)

It should be pointed out that, from a physical viewpoint,
the existence of BIC is not much related to the non-
smoothness of the continuum in which the discrete state is
embedded, as one might argue at first sight. The Van-Hove
singularities in the density of states of the continuum at
the band edges are related to the one dimensionality of the
tight-binding model, however they are not relevant for the
existence of BIC. In fact, for the same kind of continuum
a constant coupling function v(ω) = const. would not lead
to BIC, rather to two bound states outside the continuum,
as shown in the Mahan’s book [25]. So, what is the differ-
ence here? It is just the circumstance that in our model we
have engineered the discrete-continuum spectral coupling
(not the continuum itself) in such a way to suppress the
interaction between the discrete level and one (or more)
frequencies of the continuum. Of course, an open and basic
question is how to implement such a colored interaction
in a physical system, an issue which will be addressed in
the next section.

(iii) Decay dynamics and fractional decay due to BIC.
Suppose that H admits of one BIC but no bound states
outside the continuum, i.e. that equations (22) and (23)
are simultaneously satisfied. The decay law for ca(t) is
given by the inverse Laplace transform equation (12). The
Bromwich integration path in equation (12) can be de-
formed into the contour σ shown in Figure 2, where ĉa(s)
is always calculated on the first Riemannian sheet. The in-

Fig. 2. Deformation of the Bromwich path B (dotted line)
for inverse Laplace transformation. The bold solid curve is the
branch cut, whereas the deformed path is represented by the
solid closed contour σ surrounding the branch cut. The BIC
corresponds to the pole sp = −iωa of ĉa(s) on the imaginary
axis internal to the branch cut, which is surrounded by two
semi-circles whose radius R tends to zero.

tegral then comprises the pole contribution at sp = −iωa,
which arises from the semi-circles surrounding the pole,
and the principal-value integral of [1/(2πi)]ĉa(s = −iω ±
0+) exp(−iωt) along the interval −2κ0 < ω < 2κ0 of the
imaginary axis from the two sides Re(s) = ±0+ of the
branch cut, i.e.

ca(t) = cpole(t) + cd(t). (24)

Using equations (12, 14, 19) and (21), after some straight-
forward calculations one then obtains:

cpole(t) =
exp(−iωat)

1 + n0
2

(
κa

κ0

)2
[
1 −
(

ωa

2κ0

)2
]−1/2

(25)

for the pole contribution (non-decaying term), and

cd(t) =
1
2π

(
κa

κ0

)2

P
∫ π

0

dk sin2(n0k) exp(2iκ0t cos k)

× {[ωa/(2κ0) + cos k − (κa/2κ0)2 sin(2n0k)/ sink
]2

+ [κ2
a/(2κ

2
0)]

2 sin4(n0k)/ sin2 k}−1 (26)

for the decay term. The existence of a BIC is thus respon-
sible for a fractional decay of the amplitude ca(t). Such
a fractional decay is different from the most common one
encountered in other single-level Fano-Anderson models
(see, e.g., [39]) since in our model the fractional decay is
due to the existence of a BIC. Note also that, if no bound
states exist, i.e. if equation (22) is satisfied but one of the
resonance conditions (23) is not satisfied, the amplitude
ca(t) fully decays toward zero. In this case, one simply has
ca(t) = cd(t), where cd(t) is given again by equation (26)
in which the principal value of the integral may be omit-
ted. It is worth considering the limit n0 → ∞ for the
model expressed by equations (16) and (17). In this case,
in the integral on the second right term of equation (20)
the rapidly-oscillating function sin2(n0k) can be replaced
by its cycle-averaged value 1/2, i.e. one can approximately
write

Σ(s) � κ2
a

π

∫ π

0

dk
1

is+ 2κ0 cos k
=

−iκ2
a√

s2 + 4κ2
0

(27)
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which from equation (14) yields

G(ω) � κ2
a

π
√

4κ2
0 − ω2

(28)

and

∆(ω) =

⎧⎪⎪⎨
⎪⎪⎩

− κ2
a√

ω2−4κ2
0

ω < −2κ0

0 −2κ0 < ω < 2κ0
κ2

a√
ω2−4κ2

0

ω > 2κ0.

(29)

Note that the above expressions for G(ω) and ∆(ω) cor-
respond to the limit of a tight-binding Fano-Anderson
model with an uncolored interaction (see, e.g., Ref. [25],
pp. 283–285), i.e. to a flat interaction function v(k) �
κa/

√
π. In this case it is known [25] that BIC do not exist

at any value of ωa, whereas two bound states outside the
continuum are always found. The physical explanation of
the disappearance of BIC in the n0 → ∞ limit will be
discussed in the next section.

4 A tight-binding lattice realization
of the colored Fano-Anderson model

In this section we propose a simple and noteworthy phys-
ical realization of the Fano-Anderson model with colored
interaction discussed in the previous section, which may
describe either electron or photon transport phenomena in
condensed-matter or photonic tight-binding lattices. Since
k varies in the range 0 < k < π, we can expand c(k, t) as
a Fourier series of sine terms solely according to

c(k, t) = −
√

2
π

∞∑
n=1

cn(t) sin(nk) (30)

where the time-dependent coefficients cn are given by

cn(t) = −
√

2
π

∫ π

0

dk c(k, t) sin(nk). (31)

Taking into account that
∫ π

0

dk sin(nk) sin(mk) =
π

2
δn,m (32)

(n,m ≥ 1), from equations (4, 16, 17, 30) and (31) the
equations of motion for the coefficients cn can be readily
derived and read

iċn = −κ0(cn+1 + cn−1) − κacaδn,n0 (n ≥ 2) (33)
iċ1 = −κ0c2 − κacaδn0,1. (34)

The equation for ca (Eq. (3)) then reads

iċa = ωaca − κacn0 . (35)

Fig. 3. Schematic of a localized state |a〉 coupled to a tight-
binding semi-infinite lattice which realizes the Hamiltonian
model (36). κ0 is the hopping amplitude between adjacent sites
in the lattice, whereas κa is the hopping amplitude between the
localized state |a〉 and the site |n0〉 of the lattice.

In the present form, equations (33–35) can be derived from
the tight-binding Hamiltonian in the Wannier representa-
tion

HTB = −�

∞∑
n=1

κ0(|n〉〈n+ 1| + |n+ 1〉〈n|) + �ωa|a〉〈a|

−�κa(|a〉〈n0| + |n0〉〈a|) (36)

which describes the interaction of the localized state |a〉
with the n0-th site of a semi-infinite one-dimensional tight-
binding lattice in the nearest-neighbor approximation (see
Fig. 3). The tight-binding model expressed by equa-
tion (36) has been used to study transport phenomena
in different physical systems, including photon tunneling
dynamics in coupled optical waveguides [48] or in coupled
photonic cavities [43,44,46,47], charge transfer of adatoms
to a one-dimensional lattice of quantum dots [42], or de-
cay of the polarization in spin chains [49]. For instance,
equation (36) may describe charge transfer between an
adatom localized state and a one-dimensional miniband
associated with a quantum dot array, the adatom being
attached to the semiconductor quantum-dot array sur-
face [42]. It should be noted that these previous models
considered either a semi-infinite tight-binding chain with
a boundary defect [48–50] corresponding to the special
case n0 = 1, where however no BIC exist, or to an infinite
array [25,42], i.e. to n0 → ∞ corresponding to a non-
colored interaction, where again BIC do not exist. How-
ever, as shown in the previous section, for a finite value
of n0 larger than one, i.e. by considering a semi-infinite
lattice in which a defect state interacts with a lattice site
|n0〉 near (but not at) the boundary, BIC at certain fre-
quencies ωa do exist according to equation (23). In the
tight-binding representation (36) the existence of BIC has
a simple physical explanation which is related to a bound-
ary effect of the semi-infinite lattice: BIC correspond to
localized states in the lattice with cn = 0 for n ≥ n0. In
fact, let us look for a solution to equations (33–35) of the
form cn = c̄n exp(−iΩt), ca = c̄a exp(−iΩt), with c̄n = 0
for n ≥ n0. From equations (35) and (33) with n = n0

it then follows that Ω = ωa and c̄a = −(κ0/κa)c̄n0−1,
whereas after setting c ≡ (c̄1, c̄2, ...., c̄n0−1)T from equa-
tions (34) and (33) with n ≤ n0−1 one obtains that c and
Ω are the eigenvectors and corresponding eigenvalues of
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the (n0 − 1) × (n0 − 1) matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

0 −κ0 0 0 ... 0 0 0
−κ0 0 −κ0 0 ... 0 0 0
0 −κ0 0 −κ0 ... 0 0 0
.. .. .. .. .. .. .. ..
0 0 0 0 ... −κ0 0 −κ0

0 0 0 0 ... 0 −κ0 0

⎞
⎟⎟⎟⎟⎟⎠
, (37)

i.e. Mc = ωac. Diagonalization of the matrix M yields
for the eigenvalues the following expression

Ωm = −2κ0 cos(mπ/n0) (m = 1, 2, ..., n0 − 1) (38)

with corresponding eigenvectors c̄
(m)
n = sin(mπn/n0).

Note that the values of Ωm given by equation (38) are pre-
cisely the resonance frequencies for the existence of BIC
found in the previous section (see Eq. (23)). Therefore in
the tight-binding realization of the colored Fano-Anderson
model BIC arise due to a trapping effect which localizes
the excitation between the boundary of the semi-infinite
chain and the |n0 − 1〉th site of the chain. The coupling of
the state |a〉 with the lattice site |n0〉 allows for the vanish-
ing of the amplitudes cn at lattice sites n ≥ n0 via quan-
tum destructive interference. It should be noted that sim-
ilar trapping mechanisms supporting BIC in tight-binding
models have been recently found in triple or quadruple dot
molecules connected to two leads [20,22], which are mod-
eled as two semi-infinite tight-binding lattices. In these
models, BIC correspond to vanishing of the wave func-
tion at the sites in the molecule in contact with the leads,
i.e. BIC are fully localized in the molecule sites but not
in the leads. Conversely, the present tight-binding model
(Eq. (36)) involves solely one localized state side-coupled
to a semi-infinite lattice, and therefore BIC can not sim-
ply correspond to a decoupling of the localized state with
the lattice. This is clearly demonstrated by the fact that
the wave function of a BIC for the model expressed by
equation (36) is non-vanishing even in a portion of the
lattice (from the boundary site |1〉 to the site |n0 − 1〉).
Additionally, BIC cease to exist as n0 → ∞, i.e. lattice
truncation is essential to sustain BIC.

We checked the existence of BIC induced by this
trapping mechanism by a direct numerical analysis of
the coupled mode equations (33–35) using a fourth-order
variable-step Runge-Kutta method with smoothly absorb-
ing boundary conditions at the right boundary of the
lattice to avoid spurious reflections due to truncation of
equation (33). As an example, Figues 4 and 5 show the de-
cay dynamics of |ca(t)| for parameter values correspond-
ing to a complete decay (Fig. 4), i.e. to the absence of
a BIC, and to a fractional decay (Fig. 5) related to the
existence of a BIC. In the figures, the dynamical evolu-
tion of the lattice site amplitudes |cn(t)| is also depicted
on a gray-scale plot, showing either a diffusion (Fig. 4b)
or a localization (Fig. 5b) of the excitation transferred
from the localized state |a〉 to the lattice site |n0〉. We
checked that the numerically-computed decay law for ca(t)
exactly reproduces the curve predicted by the analytical
decay law equations (24–26). Note that, as the resonance

Fig. 4. (a) Decay dynamics of the amplitude |ca(t)| as obtained
by numerical analysis of equations (33–35) for parameter values
κ0 = 1, κa = 0.2, n0 = 12, and for ωa = 0.15, corresponding
to the absence of BIC. In (b) the temporal evolution of the
amplitudes |cn(t)| at the lattice sites is also shown on a grey-
scale plot.

Fig. 5. Same as Figure 4, but for ωa = 0, corresponding to
the existence of one BIC.

condition (23) for the existence of BIC is satisfied, frac-
tional decay of ca is attained (Fig. 5a), which clearly cor-
responds to trapping of the excitation at the lattice sites
|1〉, |2〉, ..., |n0 − 1〉 with a destructive interference of site
excitation for n ≥ n0 (Fig. 5b). Conversely, for a frequency
ωa which does not satisfy the resonance condition (23) for
some integer m, the amplitude ca(t) fully decays toward
zero (Fig. 4a) and the excitation transferred to the lattice
diffuses along the lattice without being trapped (Fig. 4b).

5 Conclusions

In this work an exactly-solvable single-level Fano-
Anderson model which admits of bound states inside a
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structured continuum has been proposed, and its relevance
to tight-binding lattice models generally adopted to study
electron or photon transport phenomena in condensed-
matter or photonic systems has been discussed. As pre-
viously proposed models supporting BIC in single-level
Fano-Anderson models require point-like gaps in the den-
sity of states [31,40,41] — a condition which does not
seem to have simple physical realizations [31] — in the
present work it has been shown that BIC can exist in
a tight-binding structured continuum without point-like
gaps provided that the interaction of the localized state
with the continuum is engineered in such a way to suppress
discrete-continuum coupling at some frequencies inside
the band. A lattice realization for such a colored Fano-
Anderson model, which may be of relevance to model pho-
ton or electron transport in certain photonic or condensed-
matter systems [42–50], has been proposed, and a simple
physical explanation of the existence of BIC as a trapping
effect sustained by lattice truncation has been highlighted.
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